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Abstract. Gauss decomposition of the Lie algebra has been used to derive the Miura map
for discrete completely integrable systems, which exactly reproduces the results obtained in a
recent paper by Yang and Schmid. We have dealt with the cases of discrete mKdV, discrete
sine–Gordon, discrete KdV and the Volterra system. Our approach has the advantage of yielding
the Lax pair for the modified equation. It can also lead to a second stage of modified equation
if the same procedure is repeated twice.

1. Introduction

Integrable nonlinear equations possess a very elegant property that sometimes a nonlinear
transformation of the dependent variable may lead to another integrable system. The oldest
example of such a transformation is the famous Miura map which connects the KdV equation
to the mKdV equation. Such transformations have the potential of generating non-trivial
solutions from trivial ones. Various methods have been suggested to derive such a mapping
for different cases such as the KdV equation [1], the mKdV equation [2], the nonlinear
Schr̈odinger equation [3], the Toda lattice [4], the discrete nonlinear Schrödinger equation
[5] etc. Although a general framework has been set up for the continuous case, detailed
analysis of the discrete equation is not available in the literature. Recently it has been
shown by Yang and Schmid [6] that an extension of the methodology of Chen [7] can lead
to a unified approach to the problem of Backlund and Miura maps for discrete integrable
equation. On the other hand, a few years ago Dodd [8] introduced the idea of using
Gauss decomposition of the gauge transformation of the Lax pair to derive the Miura map
and Backlund transformation. He showed that such a procedure can lead to intermediate
equations which are new integrable systems and, in the process, one discovers the Miura
map. This procedure is, in fact, the matrix analogue of the factorization of the Schrödinger
problem in the KdV case. Here in this communication we show that one can adopt the
Dodd’s procedure even in the case of discrete integrable systems, such as the discrete
KdV, mKdV, sine–Gordon etc. It is shown that almost all the results obtained in [6] can
be reproduced and, in addition, we are able to write down the Lax pair of the modified
equation itself, which was not done in [6]. Furthermore this new Lax pair can be utilized
again to generate second modified systems.
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2. Outline of the method

For a discrete integrable system the Lax pair can be written as

Fn+1 = Ln(t, λ)Fn

dFn

dt
= Vn(t, λ)Fn.

(1)

The compatibility between these leads to

dLn

dt
+ LnVn − Vn+1Ln = 0. (2)

We assume that equation (1) admits a gauge transformation. Before adopting Dodd’s
procedure let us explain some notation that is essential for the ensuing calculation. Each
of the matricesFn, Ln etc are given two indices asF i,j

n , L
i,j
n , where the first superscript

labels a solution of the Lax equation and the second indicates the intermediate equation at
a particular stage of Gauss factorization, so that the generalized form of the Lax equation
can be written as

F
i,j

n+1 = Li,j
n F i,j

n (3)

F
i,j
n,t = V i,j

n F i,j
n . (4)

In this notationF 0,0
n denotes the solution of the starting Lax equation,F 0,1

n denotes that of
the first intermediate equation Lax equation andF 1,1

n denotes another solution of the same
intermediate equation connected to the previous one by an auto-Backlund transformation.
In generalF i,j

n is the ith solution of thej th intermediate Lax equation.
So we write the gauge transformation as

F i+1,j
n = T i,j

n F i,j
n .

So from equations (3) and (4) we get

Li+1,j
n T i,j

n = T
i,j

n+1L
i,j
n (5)

and

V i+1,j
n T i,j

n = T
i,j
nt + V i,j

n T i,j
n . (6)

We now assume as in [8] thatT
i,j
n has a Gauss decomposition which can be written as

T i,j
n = 1−i,j

n 1+i,j
n (7)

where1
+i,j
n is upper unipotent and1−i,j

n is lower triangular. So mimicking the continuous
case we deduce that the equation to be satisfied by1−

n and1+
n is

Li,j+1
n 1+i,j

n = 1
+i,j

n+1Li,j
n (8)

and if 1
+1,j
n is non-singular we also get

1
−i,j

n+1Li,j+1
n = Li+1,j

n 1−i,j
n (9)

along with

V i,j+1
n 1+i,j

n = 1+i,j
n V i,j

n + 1
+i,j
nt . (10)

Let us now consider the case of a discrete mKdV equation for which

L0,0
n =

[
λ qn

−qn 1/λ

]
(11)

V 0,0
n =

[
λ2 + qn−1qn qnλ + qn−1/λ

−qn−1λ − qn/λ 1/λ2 + qn−1qn

]
(12)
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whereas the equation is written as

qnt = (1 + q2
n)(qn+1 − qn−1). (13)

Let us assume

1+0,0
n =

[
1 an

0 1

]
andL0,1

n =
[

bn cn

dn fn

]
(14)

whence equation (8) yields

bn = λ − an+1an

bnan + cn = qn + an+1

λ

dn = −qn

dnan + fn = 1

λ
.

(15)

From these equations if we demand thatcn = 0, we get

an+1 = λan − qn

1/λ + anqn

or qn = λan − qn+1/λ

1 + an+1an

(16)

whereas from equation (6) we deduce thatan satisfies

an,t = an+1 − an(λ
2 + 1/λ2) − a3

n

1 + an+1an

+ a3
n + an(λ

2 + 1/λ2) − an−1

1 + anan−1
. . . . (17)

It may be noted that equations (16) and (17) were deduced from the discrete symmetry
considerations and Riccati-type equations in [6]. An interesting and important aspect of
the present methodology is that in the course of our calculation we have deduced the Lax
pair for the modified mKdV equation (17); these are given byL0,1

n , andV 0,1
n respectively.

Written explicitly these are

L0,1
n = 1

1 + anan+1

[
λ + a2

n+1

λ
0

an+1

λ
− λan

1
λ

+ λa2
n

]
(18)

V 0,1
n =

[
zn 0
xn yn

]
(19)

wherezn, xn, yn are as follows

zn = 1

1 + anan−1

λ2 + a2
n +

(
λan − an+1

λ

) (
λan−1 − 2an

λ
− a2

nan−1

λ

)
(1 + anan−1)


xn =

(
λ2an−1 + λ2anan−1an+1 − a2

nan+1 − an+1

λ2 + a2
nan−1 − anan+1an−1

λ2

)
(1 + anan−1)(1 + anan+1)

yn = {
(1 + anan−1 + anan+1)λ

−2 + a3
n(an−1 − an+1) + 2λ2an−1an(1 + anan+1)

−(a2
n + an−1an+1)

}
/(1 + anan−1)(1 + anan+1).

Hence by employing the Gauss factorization technique it is possible to deduce not only
the Miura map and the modified equation but also the Lax pair associated with the new
equation.
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3. Other discrete equations

Let us consider now a discrete sine–Gordon equation written as

qn+1,t − qn,t = 2h(sinqn+1 + sinqn) (20)

for which

L0,0
n =

[
αn βn

rn n

]
where

αn = λ

2
(1 + cosqn) + 1

2λ
(1 − cosqn)

βn = λ

2
sinqn − 1

2λ
sinqn

rn = λ

2
sinqn − 1

2λ
sinqn

n = λ

2
(1 − cosqn) + 1

2λ
(1 + cosqn)

(21)

along with

V 0,0
n =

[ h(λ2+1)

λ2−1 −ωn

ωn
h(λ2+1)

1−λ2

]
ωn = −2h

∞∑
j=n

sinq. (22)

Following the same procedure as that used above one can immediately obtain

qn = 2 tan−1 −En ± {E2
n − 4(fn+1λ − fn/λ)(fn+1/λ − fnλ)}1/2

2(fn+1 − fn/λ)

En = (1 − UnUn+1)

(
λ − 1

λ

) (23)

whereas the modified discrete sine–Gordon equation reads as

fn,t = 2h
λ2 + 1

λ2 − 1
fn + (1 + f 2

n )ωn. (24)

ωn, given in equation (22), can be easily expressed as a function offn, fn+1 etc via the
Miura map (23). It may be noted that equation (23) was deduced in [6], and we have
kept our notation very close to that of [6] for comparison. However, the modified discrete
sine–Gordon equation given in (24) was not given there. Also in principle we know the
Lax pair of this new equation which areL0,1

n V 0,1
n .

For the case of the discrete KdV equation

qn,t = exp(−qn−1) − exp(−qn+1) (25)

we note that

L0,0
n =

[
λ expqn (expqn−1)/λ

λ expqn expqn/λ

]
. (26)

So if we assume that1+0,0
n and L0,1

n have the form given in (14) and demand again that
cn = 0 we at once obtain

qn = − log[1 + fn+1 − λ2fnfn+1 − λ2fn]. (27)

It may be noted that this Miura map is much simpler in form compared to that given in
[6].
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4. Repeated Miura map

Consider now the case of the Volterra equation written as

dun

dt
= (un+1 − un−1)un. (27)

In the present case

L0,0
n =

[
λ un

−1 0

]
and V 0,0

n =
[

un λun

−λ −λ2 + un−1

]
. (28)

Set

L0,1
n =

[
bn cn

dn fn

]
and 1+0,0

n =
[

1 an

0 1

]
(29)

so that equation (8) leads to

bn = λ − an+1

cn = un − anλ + anan+1

dn = −1

fn = an.

(30)

If we setcn = 0, we get

un = λan − anan+1 (31)

which is the required Miura map. To obtain the modified equation, assume

V 0,1
n =

[
vn rn

sn tn

]
which, when substituted into equation (10), leads to

un = un − λan = −anan+1

rn = an,t + λun + an(un−1 − λ2)

sn = −λ

tn = −λ2 + un−1 + λan.

(32)

Demanding thatrn = 0 we get the modified equation

an,t = an(λ − an)(an+1 − an−1) (33)

for which the Lax are can be written as

L0,1
n =

[
λ − an+1 0

−1 an

]
V 0,1

n =
[ −anan+1 0

−λ (λ − an)(an−1 − λ)

]
.

(34)

We now demonstrate a new aspect of the present method in which one can start with
equation (34), and apply the Gauss decomposition technique to obtain a second Miura map
and a new integrable equation.

Assume as before that

1+0,1
n =

[
1 θn

0 1

]
and L0,2

n =
[

en fn

gn hn

]
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and substitute these in (8), so that

en = λ − an+1 − θn+1

fn = θn+1an − λθn + θnan+1 + θn+1

gn = −1

hn = an + θn.

Choosingfn to be zero yields

an+1 = λ − θn+1

θn

an − θn+1 (35)

on the other hand equation (10) yields

θn,t + θn{(λ − an)(an−1 − λ) + anan+1 + λθn} = 0. (36)

One should note that the Miura map (35) nor equations (35) or equation (36) are not explicit
in nature, due to the mixing of old and new variables. To remedy this we introduce a new
variable

σn = an

θn

(37)

whence (35) gives

θn+1 = λ

1 + σn + σn+1
(38)

and equation (36) leads to

σn,t = λ2

{
σn(1 + σn)(σn+1 − σn−1)

(1 + σn + σn+1)(1 + σn−1 + σn)

}
(39)

which is the second Miura-transformed Volterra equation and (38) is the corresponding map.

5. Discussion

Our analysis clearly shows that the Gauss decomposition approach as used in the continuous
case can easily be extended to the discrete system and can form an alternative systematic
approach. While the present approach can reproduce many of the results obtained by
other methodologies, it has the potential to yielding new information about the modified
systems. In principle the process of factorization can be repeated many times, though the
corresponding results may be algebraically complicated.
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